THE EFFECTS OF DENSITY AND ARTIFICIAL SUBSTRATE ON INTENSIVE SHRIMP (Litopenaeus vannamei) NURSERY PRODUCTION

Thomas W. Tierney*, Andrew J. Ray
Research Associate, Aquaculture Division
Kentucky State University, Land Grant Program
Thomas.Tierney@kysu.edu

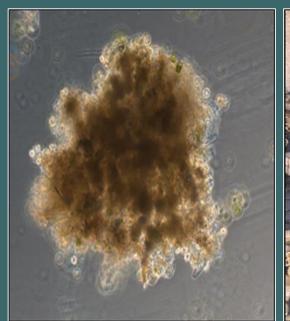
United States Department of Agriculture National Institute of Food and Agriculture



COLLEGE OF
AGRICULTURE,
FOOD SCIENCE, AND
SUSTAINABLE SYSTEMS
AND LAND GRANT PROGRAM

RECIRCULATING AQUACULTURE SYSTEMS (RAS)

- **▶** Closed Systems
- ► Minimal water exchange
 - >< 1%
- **▶** Heat & salt conservation
 - ► L.vannamei production
 - ▶#1 seafood product in U.S.
- **▶** Enhanced biosecurity
- **►** High animal density



Biofloc + Clear-water = Hybrid (HY)

- **▶** Integrates benefits from both systems
- **▶** Limited solids filtration
 - **▶** Settling chamber or foam fractionator
- **▶** Includes external biofilter
 - **▶** Nitrification (ammonia → nitrate)
- **▶** Nutritional supplementation
 - ► Lower FCR?
- **▶** High stocking density
- **▶** Water quality more manageable
- **▶** Cost may be more practical

Production Dynamics

Density

- ► Shrimp growth (consistency?)
- **►** Survival
- **▶** Growout yields
- **▶** Nutrient cycling
- **▶** Solids accumulation

Artificial substrate

- **▶** Increases surface area
- ► Additional food or trace nutrients
- ► Nutrient cycling and water quality
- ► Reduced competition for space/ reduced cannibalism

Nursery Production

- **▶** Inland production increasing
 - ► Sea level rise, real estate costs, etc...
- **►** Extends culture season/ better yield
- ► Assess PL inventory
- **▶** Maximize space utilization
- ▶ Post-larvae (PL) \rightarrow juvenile
- **▶** Biosecurity

Experimental Design

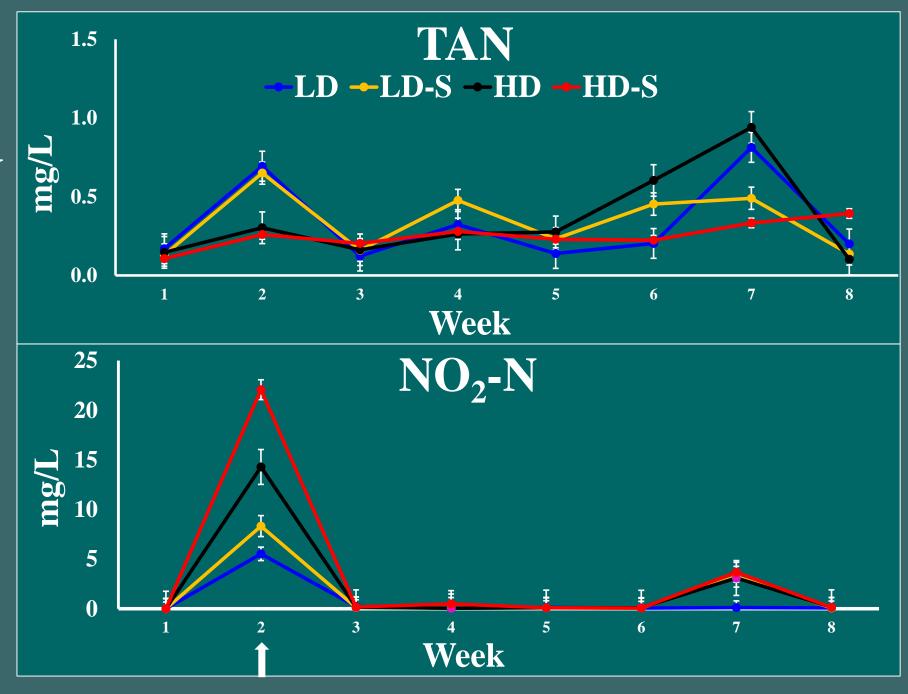
4 Treatments

- ▶ 1.) LD: 1500 shrimp/m^{3 (~240 shrimp)}
- ▶ 2.) LD-S: 1500 shrimp/m³, 7920 cm² HDPE substrate/tank
- \triangleright 3.) HD: 3000 shrimp/m³ (~480 shrimp)
- ▶ 4.) HD-S: 3000 shrimp/m³, 7920 cm² HDPE substrate/tank
- ► Twelve 160-L tanks
 - ▶ 3 tanks per treatment
- ► HY systems with an external settling chamber & biofilter (MBBR)
 - ► Settling chamber activated > 30 NTU

- **▶** Shrimp Production
 - **▶** One-way ANOVA
- **▶** Water Quality
 - **▶** Repeated Measures ANOVA
 - ► Two-way ANOVA week 2 NO₂-N
- $\triangleright \alpha = 0.05$

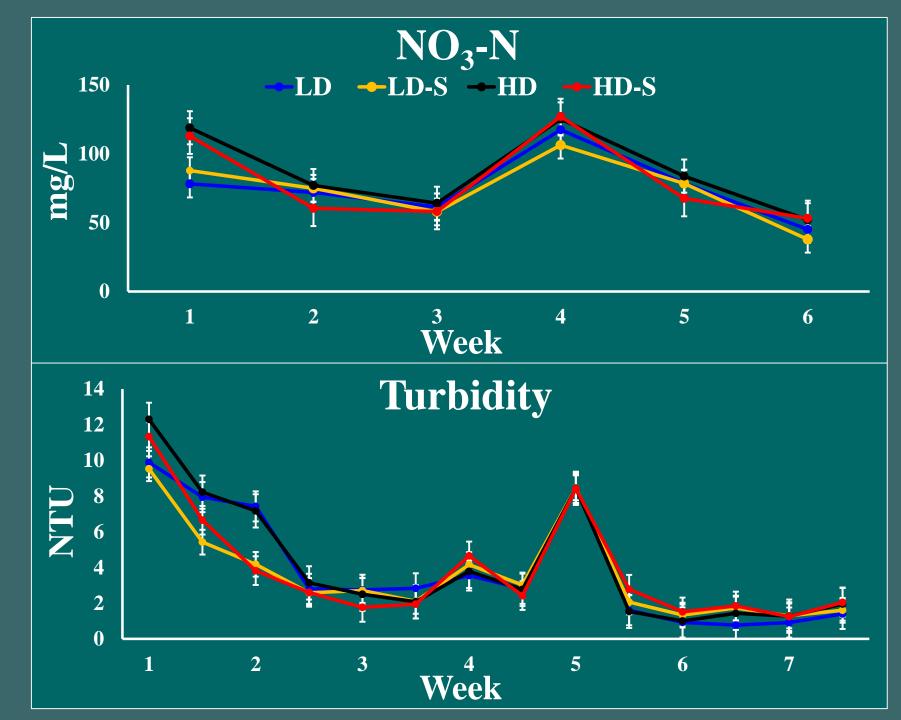
Management

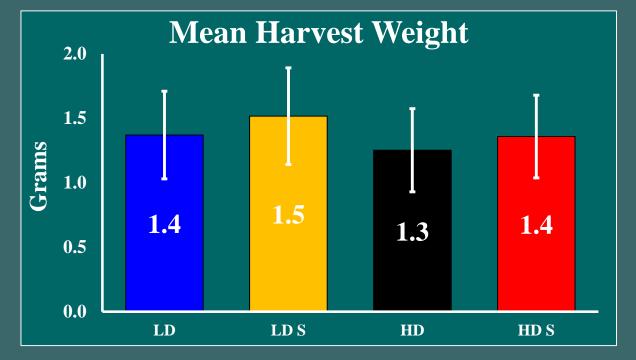
- **▶** Duration: 50 days
- ► Initial weight = 4 mg
- **▶** Feed amounts dictated by animal density
- \sim 12% biomass \rightarrow 3% biomass
- ▶ 2x Daily: Temperature, DO, pH, and Salinity
- ► 1x a week: Total ammonia nitrogen (TAN), Nitrite (NO₂-N)
- ▶ 2x a week: Turbidity (NTU)
- ▶ Nitrate (NO₃-N) measured for 6 weeks

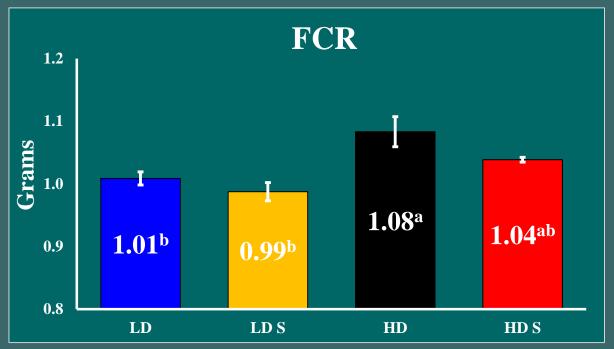


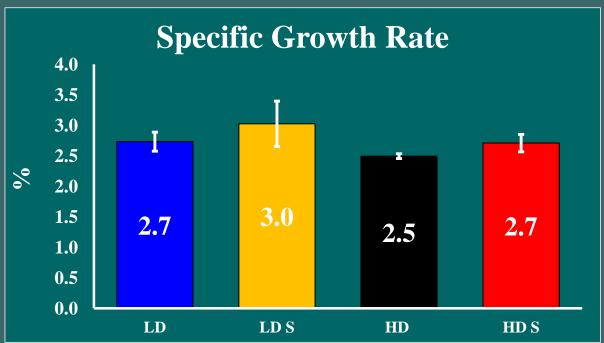
Treatment				
	LD	LD-S	HD	HD-S
Temperature °C				
AM	28.1	27.9	28.1	28.3
PM	28.2	28.2	28.3	28.4
DO (mg L ⁻¹)				
AM	6.44 ^a	6.48 ^a	6.40 ^a	6.37 ^b
PM	6.38 ^a	6.42 ^a	6.33 ^b	6.31 ^b
pН				
AM	8.42 ^a	8.44 ^b	8.39 ^c	8.36 ^d
PM	8.42 ^a	8.44 ^b	8.38 ^c	8.35 ^d
Salinity (g L ⁻¹)				
AM	31.30	30.81	31.13	31.26
PM	31.09	30.60	30.94	31.09

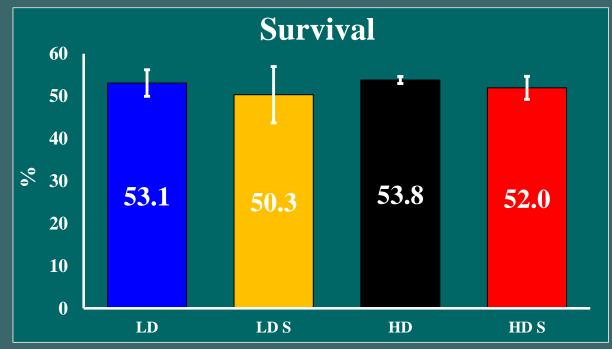
No significant differences found with TAN

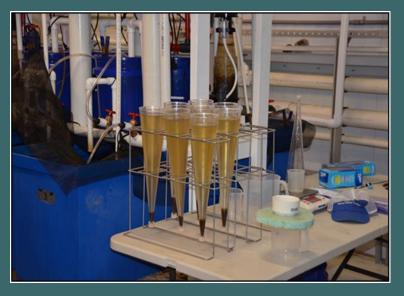

No significant differences found with NO₂-N




► No significant differences found with NO₃-N


No differences found with turbidity


▶ Settling chambers were not activated

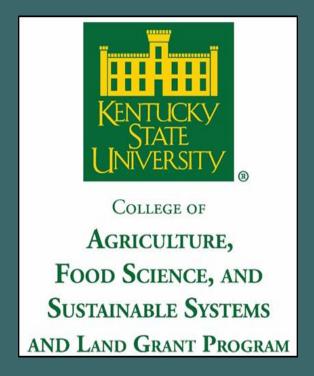


Conclusions

- ► HD significantly higher FCR than LD and LD S
 - No differences found with mean harvest weight (g), SGR, or survival
- ► Significantly higher NO₂-N in week 2
 - **▶** However, no significant interaction
- ► Significantly lower DO and pH corresponding to higher density

Future Investigations

- ► Comparison of different types of substrate
- **►** Increase culture density
- ► Increase the amount of substrate
- Stable isotope analysis (13C/12C & 15N/14N) of the periphyton



Thank You!

- ► Funding = USDA-NIFA
- **▶** Aquaculture Production Sciences Lab

United States Department of Agriculture National Institute of Food and Agriculture